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Interpolating between ferromagnets and spin glasses
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The nature of some classical N-spin systems with N® independent random interactions is examined
for 0 < B < 2. It is found that in the mean-field limit the appropriate scaling of the interactions in
the leading order is N 1-8/2 for B <1 and VN for 1 < B < 2, consistent with both known limiting
cases, ferromagnets (3 = 0) and spin glasses (3 = 2). The dynamics is found to be spin-glass-like
for B > 1, whereas for 8 < 1 the dynamics is characterized by short relaxation times. Similar results
are obtained for a one-dimensional Ising system where the strength of the random interaction decays

with the distance r as r 7.
PACS number(s): 05.20.—y, 75.10.—b

The two main classes of spin systems which have been
exhaustively investigated analytically and numerically
and which continue to be a source of new concepts in
statistical mechanics are ordered and disordered classical
spin systems [1,2]. These classes are typified by ferro-
magnetic systems and spin-glass systems, respectively.
A prototypical Hamiltonian for these systems is

N
H=-)"J;8:S;, (1)
(i)
where S; is a spin variable and N is the number of spins
that is assumed to be in the thermodynamic limit. The
spin variables that we will consider here are either defined
by a global constraint as in the spherical model 3 S? =
N [3, 4] or are of Ising type S; = 1. The form of the
interactions, the matrix J;;, identifies the topology of
the system; the dimensionality, short-range or long-range
interactions, etc. In the following discussion, we mainly
concentrate on the mean-field limit where all elements of
the matrix J;; are of the same order.

For the prototype of ordered systems in this limit, the
mean-field Ising ferromagnet (FM), all interactions are
equal to a unique positive value, whereas for the proto-
type of disordered systems, spin glasses, each interaction
is an independent random variable which can take posi-
tive or negative values. More precisely, in order for the
free energy to be an extensive quantity the interactions
in the FM case should scale as

J/N (FM), (2)

where J is a positive constant of order one, and in the
spin-glass (SG) case the interactions should scale as

J/VN

where J in this case is a random variable with zero mean
and unit variance [5]. Hence the number of quenched ran-
dom variables in these cases scales as N where 8 = 0 for
the FM case and 8 = 2 for the SG case. The origin of the
classification of ordered and disordered systems comes
from the nature of the low-temperature phase (or the

(SG) (3)
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ground state). In the ground state of the Ising FM or re-
lated models [6], spins are completely correlated to their
interactions since no frustration [7] is present, whereas for
SG’s the ground state has zero magnetization but there
is no simple way to predict its structure for a particular
realization [1, 2].

The main goal of this paper is to examine systems con-

sisting of only

NP, 0<pB<2, (4)
independent random interactions, denoted later as
Ji, J2, ..., Jns [8]. For simplicity, we assume that
each one of the random interactions appears with the
same probability. Hence each one of the interactions ap-
pears on average N2~P times in the matrix J.

We are motivated in this study by a number of dif-
ferent considerations. The first arises from the study of
finite-dimensional random spin systems. Whereas most
of the analytical work to date has been carried out only
in the mean-field (infinite-dimensional) limit, the reality
is of course finite dimensional. One way to come closer to
this situation is by reducing the number of independent
interactions, thus mimicking the fact that in the finite-
dimensional system, the finite connectivity coupled with
the geometrical constraints reduces the number of inde-
pendent interactions to a value much less than the O(N?)
associated with the mean-field limit.

A second motivation derives from the study of neural
networks. A sequential updating of a system of the type
described by Eq. (1), with 8 < 1 can be shown [9] to be
equivalent to a particular perceptron. In broad terms (see
Ref. [9] for details), the architecture is a simple percep-
tron consisting of N — 1 binary input units and 1 binary
output. The N — 1 weights are chosen to be symmetrical
around the center weight, W; = W _;. The updating of
the output unit corresponds to the updating of a single
spin under zero-temperature Glauber dynamics. Each
successive input to the perceptron is constructed by a
shift of the previous inputs by one unit to the right, and
the assignment of the last output to the leftmost input.
One can show that the dynamics of this perceptron is
equivalent to the zero-temperature dynamics of the spin
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system [Eq. (1)] under sequential updating with the in-
teractions given by Ji; = Wi_j mod N+1-

Many questions may be asked regarding this class of
models described by Egs. (1)-(2). However, the funda-
mental question is whether there is universal behavior as
a function of 8, the number of independent random in-
teractions, or do the physical properties depend on the
details of the randomness? In the discussion below, the
following three properties are examined: (1) What is the
appropriate scaling of the interactions? (2) What is the
nature of the ground state; i.e, whether it belongs to
the class of ordered systems or to that of disordered sys-
tems. (3) Is the dynamical behavior characterized by
short relaxation times as for FM or is it characterized by
exponentially long relaxation times as for SG?

In the following discussion we distinguish between dif-
ferent ensembles of matrices constructed from N”? ran-
dom variables, although the scaling results are the same,
since the details of the results is different.

The first case to be examined is 8 = 1 with spherical
spin variables and where the interactions are only a func-
tion of the “distance” between pairs of spins and where
periodic boundary conditions are assumed

Jij = Gli—j| mod N/2- (5)
The number of independent interactions for an even N,
for instance, is N/2, G1, ..., Gny2, and note that the
diagonal elements of the matrix J are zero. The probabil-
ity distribution P(G;) is taken to be Gaussian with zero
mean and unit variance xl_l = 1, except for the bound-
ary term X;,>2 = 2. The matrix J with spatial structure,
Eq. (5), is known as a Toeplitz matrix (TM). Its eigenval-
ues A can be labeled by a Fourier index I, 0 <1 < N/2,
and are doubly degenerate for 0 < ! < N/2

%”kz] . 6)

The joint probability distribution of the ); is given by

L N2 N/2
P(Xo, ..y ANy2) X exp [_N ZXM:Z} s (Z Xt)\z) .
=0 =0
(7)

where again the boundary term xo = 1/2. In the case of
spherical spin variables the ground-state energy is equal
to minus the largest eigenvalue of the matrix J, Eg =
—Amax- A straightforward calculation [10] shows that the
maximal eigenvalue in our case is

NInN . (8)

Since the Hamiltonian, Eq. (1), is proportional to the
interaction strength, the appropriate rescaling of the in-
teractions in order for the free energy to be an extensive
quantity is 1/+/ N In N. Note that the reduction of 8 from
2 to 1 affects the scaling of J only by a logarithmic cor-
rection. The result, Eq. (8), was confirmed in simulation
on systems of sizes 10 — 10%, see Fig. 1.

One way that the case 3 < 1 can be implemented is
by assuming that the interactions are a function of the

N/2

A =2 Z Xk G cos
k=1

Amax X
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FIG. 1. The largest eigenvalue as a function of N for
Toeplitz matrix with windows of size N?, 8 = 1 (0), 0.5 (o),
and 0.25 (¢). The equation of the lines are given by: dotted
line 0.56N°7%y/In N, dot-dashed line N°®/In N, solid line
0.31N°®"®\/In N. Inset: The largest eigenvalue as a function
of N for the unstructured case for 8 =1 (A), 1/2 (+), and
0.25 (o). The curves are 0.78y/NIn N, 0.43N°%"% 0.32N°875,
respectively.

distance modulo N'~? between any pair of spins

Jij = Glizj| mod N1-5- 9)

The structure of the first row of the matrix J,;, for in-
stance, in this case is a “window” of length N® which is
repeated up to N/2 and the second half of this row is a
mirror image of the first half around N/2, since periodic
boundary conditions are assumed. The structure of the
eigenvalues in this case is given by

N* N8 2

T
/\=2E G E cos| == (k + NPml)|, 10
1 k=1Xk k P [N( )] (10)

where it is clear that the number of times each one of the
random G} appears is equal to the number of windows,
N'~B. In order to calculate the scaling of the largest
eigenvalue one may use the following observation. The
second argument of the cos term, in Eq. (10), is inde-
pendent of k£ and it contributes a constant phase only
when | = gN'~P, where ¢ = 1, 2, ... ,1NP. Therefore,
for these eigenvalues the second sum of Eq. (10) gives a
number of order N~# and the first sum then is a random
walk of NP steps where the size of each one of them is
of order N'~#. Hence, each one of these NP eigenvalues
scale as N17%/2_ In a manner parallel to the derivation of
Eq. (8), one can then verify that the maximal eigenvalue
among these eigenvalues scales as

Amax ~ N*P/2\/InN . (11)

It is also clear that this eigenvalue is the maximal one
among the N eigenvalues, since for the rest of the eigen-
values the cos does not have a constant phase for each k.
Then the phase is essentially random so that A o v/N.
Thus, for such systems that consist of N random inter-



3528

actions of type Eq. (5) and spherical spins, the appro-
priate rescaling is to leading order 1/N1~#/2, Results
of numerical diagonalization of matrices up to size 10°
and for various values of 3 are presented in Fig. 1. Let
us only comment that the above-mentioned results for
B < 1 are not affected when the bias of the interactions
is subtracted such that > Gy = 0.

The above is to be contrasted with another implemen-
tation of the case # < 1, namely to construct the sym-
metric matrix J at random from the NP independent
random variables Gi. For each J;; (i < j) one of the
G is chosen at random with equal probability. Hence,
the average number of times that each interaction ap-
pears in the unstructured matrix is N278 to leading or-
der. Numerical diagonalization of such matrices up to
N = 1000 indicates that the average maximal eigenvalue
scales as N178/2 a5 for the previous case, see inset of Fig.
1. To understand this, assume that the randomness of
the matrix J is restricted such that in each row of the ma-
trix each interaction appears the same number of times,
N'=B. One can easily verify that one of the eigenvectors

is (1, 1,...., 1) with corresponding eigenvalue
N NP
Y6 = NP Go= oN'P L (12
=1 1=1

This eigenvalue is on the average one half of the time
positive, since the sets {G}} and {—Gj} have the same
probability. The rest of the eigenvalues, however, scale as
VN, since they are insensitive to the bias. Hence, for the
one half of the time where the bias 3 G is positive, the
largest eigenvalue scales as N'~8/2 with a FM ground
state. Note that since there is only one eigenvalue of
this order there is no vIn N factor in this case. In simu-
lations on unstructured matrices (where our argument is
only approximate) it was found that there always exists a
FM eigenvector with structure (1+¢€;, 1+e€2, ... ,1+€n),
where |¢;| is less than one and is a decreasing function of
N. Note that, in contrast to the window implementa-
tion above, the scaling Apax x N 1-B/2 is a direct result
of the bias of the G and that the scaling of the largest
eigenvalue reduces to v/N as for the SG case if the bias is
subtracted. Nevertheless, if the bias is not removed, the
scaling Apax & N 1-8/2 gbtains in both implementations.

A crucial question is whether this scaling is relevant
also to discrete spin variables such as Ising spins, where
Egs # —Amax- We examined this question by using zero-
temperature Monte-Carlo dynamics initiated from many
random configurations, where the ground-state energy
was chosen as the minimal energy among the metastable
states. For each size of the system, a halting criterion
was chosen by monitoring the rate of appearance of new
metastable states (MS) with the result that the number
of MS grows exponentially for N < 50 [11]. The results
for 8 = 1, 1/2, and 1/4, for instance, are presented in
Fig. 2 and indicate that indeed even for Ising systems
the interactions should scale as N#/2~1 to achieve an ex-
tensive energy.

Let us now try to examine the structure of the ground-
state energy as a function of # and try to estimate the
probability that it is characterized by a FM order. Let us
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FIG. 2. The ground-state energy Eg, for the Ising case

with an unstructured matrix. 8 =1 (o), 8 = 0.5 (O), B8 =

0.25 (A). The equation of the lines are: dot-dashed line
0.28N°%75,/In N, dotted line 0.43N°"5/In N, solid line
0.8N°*vIn N.

first examine the case of spherical spins. As we discussed
above, for the TM J constructed from windows of size
NA, the number of eigenvalues of O(N*~#/2) is N and
their Fourier indices are | = ¢N'=#, ¢ =1, ..., %Nﬂ.
Numerical diagonalization of such matrices indicates that
the probability for the ground state to be of wave number
lis N~P, independent of I. Hence, the probability for the
ground state to be ferromagnetic, [ = 0, is proportional to
the inverse of the number of eigenvalues of O(N14/2).
A similar behavior was observed in simulations of the
same matrix J but with Ising spins, where the Fourier
spectrum of the ground state consists of one dominant
peak. However the results in this case are noisy since
the largest examined N is much smaller. Note that for
the unstructured matrix case the probability for a FM
ground state is 1/2, independent of (3, as was discussed
above.

Besides the rescaling of the interactions, an interest-
ing question is the nature of the dynamics as a function
of B. Is the dynamics at finite temperature governed by
short relaxation times as for FM systems, or is it gov-
erned by long relaxation times as for the SG case? A
direct answer to this question requires a careful analysis
of finite-temperature Monte-Carlo simulations of random
systems, which in general, if possible, is a heavy numer-
ical task. Therefore, a different measure was used to
shed light on this question. This measure is the proba-
bility, Pg,, that starting from random initial condition the
system ends at the ground state under zero-temperature
Glauber dynamics. For FM systems P, is expected to
be of order one, independent of N, whereas for SG sys-
tems Pg, is expected to scale exponentially small with
N [11]. This behavior is deduced from the fact that for
FM systems there is only a finite number of metastable
states whose basin of attractions are comparable with
that of the ground state, whereas for SG systems the ef-
fective number of such metastable states is exponential
with N. In our simulations for N < 50, the number
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FIG. 3. The probability to evolve into the ground state
from random initial conditions as a function of N for
B = 2(),B=15(A),B8=1(0),8=05(+). The
line is proportional to N6,

of random initial conditions was greater than the num-
ber of metastable states, and hence the ground state is
expected to be reached. Furthermore, the number of tri-
als before the ground state was first reached was verified
to be much smaller than the number of random initial
conditions. The results of our simulations on Ising spins
and an unstructured matrix J indicate that the region
0 < B < 2is divided into the following three regimes. (a)
0 < B < 1, Pg,isof order one. (b) 8 =1, Pgs ocx N7 where
vy~ —=16. (c) 1 < B <2, P x e 4N with A ~ 0.05
independent of 3, see Fig. 3. Hence, the behavior of
the system for 3 > 1 is expected to be similar to SG
systems 3 = 2, both from the aspect of the rescaling of
the interactions and from the long relaxation times that
characterize the dynamics. At 8 = 1 a transition from
exponentially slow relaxation to power law relaxation is
observed. Finally, note that for a TM J with 8 < 1, P,
was observed to be independent of N as for regime (a).
We have seen that one way of interpolating between
FM and SG is to allow the G from which the TM is con-
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structed to be correlated over large “distances”. Another
way to accomplish this is to choose

(Gi)=0, (GiGj)= f(li—1l) (13)
where
f@) ~ ilﬁ, i>1 (14)

Using Eq. (6) the scaling properties of the eigenvalues of
such a “colored” TM are

K ik ik
(’\i) =4 Z Xinf("i - jI)COS(%; ) cos(—"r]é—

%,j=0

~ N2B k=B, 1<k« N (15)

Since A falls off with k, we expect that the maximal
eigenvalue will have a fairly small value of k. Then, since
the \ scale with N as N178/2 we get that the maxi-
mal eigenvalue scales the same way [without the In*/?(N)
factor, since the number of large eigenvalues does not in-
crease with N]. Numerical results of our simulations, us-
ing a Fourier representation [12] of the G to generate the
colored TM, are in excellent agreement with our scaling
predictions [10].

Finally, let us mention a few open questions regard-
ing the interpolating systems between FM and SG which
certainly deserve further research. It will be interesting
to find an analytical method to calculate the free energy
and then to examine the behavior as a function of 3 at
finite temperature, especially the critical exponents at
the transition to the low-temperature phase. The prob-
ability distribution of the eigenvalues as a function of
B and the gap between the maximal eigenvalue and the
next one are examples of general features of correlated
random matrices which still need to be addressed.
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